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A simple model of a decaying quantum mechanical state 
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D-7500 Karlsruhe 1, West Germany 

Received 12 March 1987 

Abstract. A model featuring a one-dimensional particle in a tilted potential which may be 
trapped in a S type potential well is considered. The time dependence of a state where 
the particle is trapped and where it decays via the quantum mechanical tunnel effect is 
calculated explicitly. Since the background potential decreases without limit (in one 
direction), the decay is purely exponential for long times and the decay rate is equal to 
the imaginary part of the eigenenergy in a Schrodinger equation that is solved for a 
quasi-stationary state. 

The decay of a metastable state by quantum mechanical tunnelling is a problem which 
has received much attention recently in connection with questions concerning the 
validity of quantum mechanics on a macroscopic scale (see Leggett 1978, 1980). Usually 
the calculation of the wavefunction or decay rate of such a state relies, even in the 
one-dimensional case, on a mathematical approximation scheme of quasiclassical type 
(Schmid 1986, Coleman 1985). Therefore, the simple model to be discussed here may 
be of some interest, since it allows explicit discussion of many general features occurring 
in the theory of quantum decay. 

The model I wish to consider is that of a particle in a tilted potential which may 
be trapped in a 6 type potential well at the origin. Thus 

H = Ho-RG(x) 

Ha = p 2 / 2 m  - Fx. 

If the dimensionless quantities 

(1) 

s = x/xo z =  E / E o  r = tEo/ h w = f l /xoEo ( 2 a )  
are introduced where 

1/3 

x0=(&) Eo= Fxo 

the Hamiltonian is given by 

h ( ( ) = - a : - 5 - w 6 ( 5 ) .  (3) 

( z  - h ( 5 ) ) % ( 5 , 5 ' ;  z )  = 6(5 - 5') 
I will calculate the resolvent %((, 5'; z )  which is defined as the solution of 

(4) 
subject to the boundary conditions that %( 5, 5'; z )  remains bounded as 5 + *W. Regard- 
ing the 6 well as a perturbing potential, U(() = -US(,$), the integral equation 

( 5 )  
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where %o is the resolvent of the particle in the tilted potential, can be easily solved to 
yield 

Note that % automatically obeys the same boundary conditions as LBO. 
The solutions of the differential equation for %o(5, 5'; z )  

(a:+5+z)%o(5, 5'; 2 )  = fj(t-5') 
are linear combinations of the Airy functions Ai( -5 - z) and Bi( -5 - z). At 5 = t', 9o 
is continuous but its derivative has a jump 

8@0(5, 5'; z)I*=*'+o-d&l(5,5'; z) l5=c,-o= 1 .  (7) 
The solution satisfying the boundary conditions is 

where %:IA are given by 

Ci+'-( -5' - z )  Ai( -5 - z )  
Ci+'-( - 5 - z )  Ai( -5' - z) 

5s 5' 
53 5' 

%:'A( 5, 5'; 2) = - 77 (9) 

corresponding to the retarded and advanced Green functions respectively. We have 
introduced the notation Ci' = Bi * iAi for brevity. 

As is well known the spectrum of the Hamiltonian can be derived from the properties 
of the resolvent on the real z axis (Economou 1983). Bound states correspond to poles 
of the resolvent whereas a continuum of states gives rise to a discontinuity on the real 
axis. In  the present case 5'; z )  is discontinuous everywhere on the real axis and 
it follows that Ho,  and therefore H, possesses a continuum of eigenstates without any 
bound state, the spectrum stretching over the whole real axis. 

The Airy functions are entire, i.e. they possess no singularities in any finite region 
of the complex plane. Correspondingly, the function go"([, 5'; z) can be continued 
analytically in the entire z plane. We remark, however, that the continuation of 
%:( [ , ( I ;  z) into the lower half-plane does not satisfy the boundary conditions. 

The analytic continuation of %"(& 5'; z) into the lower half-plane 

has poles whenever the denominator of the second term vanishes. Considering the 
alternative expression 

%F(O, 0; z) = -27r exp(i7r/6) Ai[-z exp(2in/3)] Ai(-z) 

one finds that %:(O, 0; z) has zeros on the positive real axis and on the ray arg z = - 2 n / 3  
(Abramowitz and Stegun 1968). Therefore one expects that, in the limiting case w >> 1, 
the function %"([, 5'; z) has poles in the vicinity of these zeros. To the lowest 
non-vanishing order in l / w  the poles close the the real axis are located at 

n = 1 , 2 ,  . . . 
w (12)  
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whereas the poles close to the ray arg z = - 2 ~ / 3  are given by 

z,, = Re zn exp(-2 i~ /3) .  (13) 

Most important, however, is an isolated pole zo ,  since it is very close to the negative 
real axis. If w >> 1, we may use the asymptotic expansion of the Airy functions and 
we find that this pole is given by 

Re zo = -&02 

Im zo = - i w 2  exp(-&03). 

In this limit, Re zo coincides with the energy of a particle bound in a 6 type potential 
well without any background potential ( F  = 0). Perhaps surprisingly, it is possible to 
establish a connection between some of the above results and the WKB approximation. 
Thus one arrives at condition ( 1 1 )  if one demands that the WKB wavefunction has a 
node at the location of the S function. Furthermore, the exponent in the expression 
for Im zo is the classical action of a particle of energy aw2 performing a complete 
periodic motion ('bounce') in the inverted potential, in which case the 6 function acts 
as a reflecting wall. 

The residue of YR(& 5'; z) at any pole z = Z is of the form of a product of 
wavefunctionst $j(t)$i((') where t,hj(5) is proportional to Yo"(& 0; z ) .  Explicitly, we 
have 

Ai( -5) Ci'( -5 - 2) 
Ci'( -5)  Ai( -5 - 2) 

5',0 
5<0. 

Note that $,(e) may be called a quasi-stationary wavefunction since it satisfies the 
(quasi-stationary) Schrodinger equation 

h (OJ l i (5 )  = W i ( 5 )  
as l / w  + Yt(0, 0; 2 )  = 0 by construction. The asymptotic expressions for the Airy 
functions reveal that far to the left the wavefunction falls off exponentially, whereas 
far to the right it represents an outgoing wave. It should be noted, however, that 
because of the negative imaginary part of i the wavefunction will not be bounded at 
infinity. 

Given an initial state $i(5) its evolution in time is governed by 

IL(5,r) = d5' X ( 5 , 5 ' ;  T)$ i ( t ' )  

where X ( 5 ,  5'; T )  is the Fourier transform of the retarded Green function. Thus 

$(5, T )  = i  5 d5' E e x p ( - i u r ) % ( &  5'; z =  u+iO)$i(&'), 

As demonstrated in the appendix, for T > 0 it is possible to close the contour of 
integration with respect to U in the lower half-plane if one regards the propagator 
X( 5, 5'; T )  as an operator acting upon integrable initial wavefunctions. By the theorem 
of residues we obtain 

t Observe that there is no complex conjugation 
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where the zn denote the poles of %R( 6, 6‘; z )  in the lower half-plane and the wavefunc- 
tions +z,, are defined as in (16). Let us introduce.z, = zk-iz:. Then, far to the right, 
the quasi-stationary wavefunction $,,, (6) is asymptotically given by GZ,, (6)  = 
$9r,(6) exp(z2’/*) ,  where 

i.e. it grows exponentially with ( I / *  due to the negative imaginary part of z,. We may 
now express the temporal behaviour of the wavefunction in the form 

$(t, T) = C {+=,, I +,M,, exp(-izLT) exp[-zXT- P 2 ) I  (20) 
n 

where we have introduced the shorthand notation? { +zn 1 +,} = j d6‘ i,hz,, ( ( I ) $ [ (  6’). The 
behaviour of $([, T )  will be dominated by the real exponential factor. For 5 fixed and 
T >> t1’2 only the term containing z;l needs to be retained because in the limit w >> 1 
the ratio zb/z: becomes arbitrarily small as can be seen by comparing equations (12) 
and (13) with (16). We thus obtain 

+(t, 7) ={$,I +O+9, exp(-izbT) exp[-z,”(T- P2)I. (21) 
Another quantity of interest is the probability amplitude for still finding the system in 
the initial state after time T, which, provided that (Cli(6) is integrable, is given by 

Again, due to its small imaginary part, only the term containing zo survives if T is 
sufficiently large. 

These results allow the following interpretation. The projections of the initial 
wavefunction on quasi-stationary states with a large imaginary part of the energy leave 
the well quickly and then move in a classical fashion, accelerating uniformly to the 
right. Classically, in a time T, the particle falls a distance 6 = T ~ .  At a fixed position 
6, for times which are much larger than the classical passage time from the origin to 
6, only the projection on the quasi-bound state $, is seen and this decays exponentially 
with the rate z;. 

If the potential tilt flattens out to reach a constant value, the exponential decay 
law breaks down for long times (Hohler 1958), in contrast to the present case, where 
the exponential decay prevails forever. This can be ascribed to the fact that, in the 
former case, the decay products move away from the decaying state so slowly that 
interference between the decaying state and the decayed amplitude will occur. 
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Appendix 

We wish to show that it is possible to close the contour of integration with respect to 
z in (16) by a half-circle of infinite radius in the lower half-plane. For this purpose 

t Observe that there is no complex conjugation. 
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we consider the asymptotic behaviour of 9R(& 5’; z). The asymptotic expansions of 
the function Ai(-z) and Ci’(-z) are as follows. 

-2713 s arg z S 0 

exp( -i ~/4)z-”‘[exp( i4z3I2) - i exp( - ~ : z ~ ’ ~ ) I  1 
Ai( -z) - - 

2J;; 

Sector 1: 

1 
Ci+( -z) - - exp( i7/4)z-’/‘ exp(i;z3’*) 

J;; 

Sector 2: - - 7 ~  arg z -21r/3 

1 
Ai(-z) =- exp(- i~/4)z-’ / ‘  exp(i$z3/*) 

2J;; 

exp( -i 7 / 4 )  z-’/‘[ exp( -i4z3l4) + $i exp( i:z3/*)]. Ci+(-z)-- 
J;; 

1 

Let us now write %”(& 5‘; z) as 

YR(5, 5’ z) = 935, 5‘; z) - 9% 5‘; z) 

where 

In sector 1 we find that %:(O, 0; z )  becomes dominant and the denominator can be 
replaced by --4z-’/* exp(i$z3/*). In sector 2, on the other hand, 9:(0,0; z )  becomes 
arbitrarily small with the modulus of z so that in this region the denominator must be 
replaced by l / w .  In the following we treat only the case 5> 0 and we always assume 
IzI >> 1[1,)5’1. Let us first consider (e:((, 5’; z). In sector 1, where 9:(0,0; z )  is dominant, 
the asymptotic behaviour is simply 

%:(5, 5’; z )  - z’/*((+ z ) - ’ / ‘ ( 5 ‘ +  z)-’/‘ exp[ ih( [+  5’)]. 

g ( 5 ,  5’; 2)- -f(5+z)-’/4(5’+z)-’/‘ {I I exp[i$z3”+i&(5+5’)]-i exp(-iJ;I(- 5’1)). 

(AI)  

In sector 2 one obtains 

(‘42) 

In this case both exponential terms are subdominant. 

Sector 1: 
The asymptotic behaviour of 9:(5, 5’; z )  is as follows. 

%e,”([, 5‘; z )  - -fi(5 + z) - I / ‘ (  5‘ + z )  -‘ /“{exp(ihl5 - 5’1) - exp[ i&(5 + &’)I} 

Sector 2: 

(e,”((, 5’; z )  - -;iz-”* (5+ z)-”‘(5’+ z)-’/‘[I4 exp(ifz3/*){exp[i&(5+ [’)I 

(A31 

-exp[i&l5-5‘1]}-i exp(-ihl5+5’1)+i exp[-ih(5+[’)]1. (‘44) 

In this case also the expression in shadow brackets is subdominant. 
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In sector 2 we obtain by the lemma of Jordan that a path at infinity contributes 
nothing to the integral 

dz exp( - i zT)  ie"( [ , & I ;  z )  5 
because expressions (A2) and (A4) both vanish at infinity. 

In sector 1 the term (A3) also brings no contribution. To see this let us evaluate 

exp(i&cy) 
& (Y, T > o  

and by putting z = r e-"+(O < cp < : T )  one derives 

I I 1  h 502T'3 dcp exp( rr sin cp + h a  sin cp/2). 

If r is large enough one can always find a number c (0 < c < 7) such that exp(-rT sin cp + 
f i a  sin 9 / 2 )  s exp(-rc sin cp). Thus 

I ~ I ~ ~ [ ~ ~ ' " ~ ~ ~  exp(-rcsin c p ) a i / f i .  

The expression (Al )  itself brings a non-vanishing contribution to the z integration. 
However, if we first perform the integration over 6' with an absolutely integrable initial 
wavefunction t,bi in (16) we obtain a function which goes to zero as z goes to infinity 
that, by an argument similar to the one above, would bring no contribution to the z 
integration. We conclude that, in the restricted context that t,bi is an integrable function, 
the contour of integration with respect to z can be closed by a half-circle of infinite 
radius in the lower half-plane. The restriction on t,b, means that the sum (18) only has 
a meaning in this restricted sense as well. 

References 

Abramowitz M and Stegun I A 1968 Handbook ofMathematical Funcrions (Washington, DC: Govt Printing 

Coleman S 1985 Aspects of Symmetry (Cambridge: Cambridge University Press) ch 7 
Economou E N 1983 Green's Functions in Quantum Physics (Berlin: Springer) 
Hohler G 1958 Z. Phys. 152 546 
Leggett A J 1978 J. Physique C 6 1264 
- 1980 Prog. Theor. Suppl. 69 80 
Schmid A 1986 Ann. Phys., N Y  170 333 

Office) 


